URINARY (RENAL) STONE (NEPHROLITHOISIS) – An Overview

UNIVERSITY OF PNG SCHOOL OF MEDICINE AND HEALTH SCIENCES DIVISION OF BASIC MEDICAL SCIENCES DISCIPLINE OF BIOCHEMISTRY AND MOLECULAR BIOLOGY PLB MBBS II SEMINAR

VJ Temple

What are Urinary (Renal) Stones (Nephrolithoisis or Renal Calculi)?

- Accumulation of minerals in the urinary system;
- Occur when salts or mineral crystals accumulate on inner surfaces of Kidney or Urinary Tract;
- Renal calculi are often jagged and sharp crystals that may accumulate anywhere in the urinary tract;
- Crystals may break off causing severe pain as they move through the urinary tract, especially along the Ureter;
- Renal Stones are common causes of Pain, Obstruction and Secondary infection in the urinary system;
- Pieces of stones may pass without pain, others too large to pass, thus embed in wall of ureter causing pain;

What are urinary stones made of?

- Most urinary stones consist of one or more compounds:
 - Calcium Oxalate, Calcium Phosphate, Uric Acid, Cystine or Xanthine;
- Struvite or "Infection" stone is a mixture of these compounds with Magnesium Ammonium Phosphate;
- General characteristic of these compounds:
 - Most are poorly soluble in aqueous medium,
 - For others solubility is influenced to a major degree by urinary pH
 - They crystallize within an Organic Matrix, forming stone;

What mechanism is involved in formation of urinary stones?

- Exact mechanism(s) not fully know;
- Most common suggested mechanism for stone formation is:
 - "Super-Saturation Crystallization"
 - Dehydration causes Calcium Phosphates, Oxalates, Urea, Uric Acid, and/or other compounds to combine and crystallize;

What are some factors that influence formation of urinary stones?

- Some related factors for urinary stone formation are:
 - Age, Sex, and Family history of Stones,
 - Water Consumption, Climate,
 - Associated Medical Problems,
 - Dietary Patterns
 - \circ Example of dietary effect:
 - Intake of high doses of Vit C supplements on a regular basis (500mg or more) increase risk of urinary stone formation in some individuals;
 - Eating foods High in Oxalate may trigger urinary stone formation;

- Examples of foods with high Oxalate levels: Spinach, Rhubarb, Beets, Nuts, Chocolate, Wheat Bran, Tea, Strawberries;
- Usually males suffer from urinary stones more often than females;
- Abnormal and Excessive Accumulation of Stone forming substances in urine,
 - Examples: Calcium, Oxalate, Uric Acid, Cystine,
 - They are usually soluble in presence of Citrate and Pyrophosphates, that inhibits formation of stones;
 - Stone formation occurs when concentration of stone forming substances are very high and inhibitors are low;
- Imbalance of factors affecting solubility of components in the urine; 6

- Some inherited metabolic disorders may or may not result in stone formation,
 - Examples of disorders: Hypercalciuria, Hyperoxaluria, Cystinuria
- Low intake of fluids,
 - People living and working in hot conditions are liable to become dehydrated, and show greater tendency to form renal stones, as the urine become more concentrated;
- Urinary infection, because debris of Bacteria promotes crystal formation;

- Urine pH (altered by bacterial activity and metabolic factors),
 - Alkaline urine due to infection with Urea Splitting bacteria
 - Example: Proteus predisposes to formation of Magnesium Ammonium Phosphate stones (insoluble in alkali),
- Mucoproteins in urine provide Organic Nidus on which crystal deposition occurs;
- Congenital Anomalies of Urinary Tract Obstruction;
- Hyperparathyroidism,
- Renal Tubular Acidosis (RTA) can cause stone formation;

Why do some individuals have multiple recurrences of urinary stones?

- Exact reasons and mechanisms for multiple recurrences of urinary stones in some individuals are not completely understood, but may involve multitude of factors including the following:
 - Low urine flow (low fluid intake),
 - Factors increasing Super-saturation of urine with stone-forming salts,
 - Example: Over excretion states and conditions that lead to low urine flow rate;

- Absence of substance or substances in the urine that inhibit formation of crystal;
 - Example: Absence of abnormal crystal growth inhibitors, such as Citrate;
- Occupation of the individual as possible cause of dehydration;
- Nature of the diet of the individual;
- Medical conditions such as:
 - Recurrent urinary infections,
 - Gout,
 - Cystinuria,
 - Family history of gout or urinary calculi;

What are the characteristics of Calcium Oxalate stones?

- Calcium Oxalate Stones:
- Most common urinary stones encountered;
- Usually associated with:
 - Low urine output resulting in concentrated urine,
 - Increased excretion of urinary Calcium or Oxalate,
 - Contains mainly Calcium Oxalate with small quantities of Calcium Phosphate and Uric Acid;
- Test for calcium and oxalate output in urine of must be assessed to ascertain that mechanism of urinary acidification is normal,

- High fluid intake is beneficial, it is effective in diluting Calcium and Oxalate preventing **Hypercalciuria**;
- To prevent Hypercalciuria, patients need to pass at least 1.5L of urine per 24-hour;
- Simple guide: Ensure urine is as colorless as possible;
- As a rule: Dark urine indicate high concentration, hence greater tendency for stone formation;
- Diuretic drugs used to increase urine flow rate, thus preventing the super-saturation of urine with Calcium Oxalate,
- NB: Chronic Negative Calcium Balance may occur if patient consumes low Calcium diet for prolonged period as a method for preventing stone formation;

What is Hypercalciuria?

- Hypercalciuria (High Calcium in Urine):
- Defined as urinary excretion rate of Calcium of:
 - 300 mg/day (for men),
 - 250 mg/day (for women) or
 - 4 mg/kg for both male and female;

What is Hyper-oxaluria?

- Hyper-oxaluria (High Oxalate in urine): May be due to
 - Enteric disease;
 - Excess Ingestion of Oxalate-containing foods
 - Examples: Spinach, Cocoa, Nuts, Pepper, Tea
- Amount of Oxalate in urine and Clinical history can be used to identify the causes of Hyper-oxaluria;
- Usually suggested that Stone-formers with Mild Hyper-oxaluria should consume diet high in Calcium Why?
 - Because Calcium binds Free Oxalate in GIT and prevents its absorption and subsequent excretion in urine; 14

- Idea that stone-formers should eat more foods rich in Fiber content and hence Phytic Acid with the aim of binding Calcium in GIT is not a good suggestion; Why?
 - Because the fiber binds Calcium, thus less amount of Calcium is available to bind Oxalate;
 - Best strategy is to consume diet low in Oxalate;

What is Hyper-uricosuria?

- Hyper-uricosuria is High Uric Acid in urine;
 - Occurs when Uric Acid in urine is greater than
 - 750 mg/24hrs in Female,
 - 800 mg/24hrs in Male,
- Uric acid crystals provide Nidus on which Calcium Oxalate crystals can orient themselves and grow;
- Hyper-uricosuria is due to excess consumption of Purine,
- What are the sources of Purines in diets in PNG?

What are the characteristics of Uric Acid Stones?

- Uric acid stones can occur in patients with normal serum and urinary levels of Uric Acid;
- Some patients with uric acid stones may either have been diagnosed as having Gout or be shown to have Gout during investigation;
- Myeloproliferative disorders and Chemotherapy can cause Uric Acid stone,
- Majority of patients with Uric Acid stones can be treated medically;

- Treatment involves:
 - High fluid intake to maintain an output of at least 2.0L of urine a day;
 - Adjustment of Urinary pH to 6.5 7.0;
 - Important to monitor urine pH with test strips and adjust medication accordingly;
 - If patient is not responding;
 - Allopurinol can be used to reduce the excretion of Uric Acid by blocking Xanthine Oxidase;

What causes Uric acid stone formation?

- Uric acid stones may occur because of increased urine acidity in which Uric Acid crystallizes,
- Urate is more soluble than Uric Acid,
- Example:
 - Urine at pH 7.0 dissolves between 150 200 mg/dl of Urate, whereas
 - Urine at pH 5.0 dissolves only one-tenth as much Urate (between 15 - 20 mg/dl),
 - Normal urine usually has pH below 5.8,
 - Urine Acidification occurs in Distal Tubules and Collecting Ducts;

- **Sodium Urate** is formed at sites Proximal to the site of urine acidification;
- Uric Acid Crystals are formed at Distal sites;
- Most stones in the urinary collecting system are composed of Uric Acid, thus stone formation can be reduced by Alkalinization of the Urine;
- This can be achieve by using Sodium Bicarbonate tables, or Sodium or Potassium Citrate;

How can Uric acid stone formation be reduced?

- Consumption of large amounts of foodstuffs rich in Purines, can increase Plasma Urate levels over 7.0 mg/dl (0.4 mmol/L) Why?
 - Because dietary Purines are converted to Uric Acid by Intestinal Xanthine Oxidase that converts:
 - Hypoxanthine to Xanthine,
 - Xanthine to Uric acid;
- Foods with low Purine lowers Plasma Urate level;
 - Examples of Foods with high Purines: Sweet breads, Liver, Yeast, Kidneys, Sardines, Tea, Coffee, Cacao;

- Diet adequate but not high in protein should be eaten;
- Obesity causes high Uric Acid level because of high intake of food;
- Avoid dehydration,
- Reduce intake of Alcohol (Why):
 - It causes diuresis leading to dehydration,
 - High rate of alcohol metabolism results in Lactic Acidosis, which suppresses Tubular Secretion of Uric Acid,

What are some of the characteristics of Struvite stones?

- Struvite stones consist of Magnesium Ammonium Phosphate;
- Struvite stones occur twice as commonly in women than men; Why?
 - Struvite stones are associated with infection, although it is still unclear whether it is the stone that causes the infection or vice versa,
 - Organisms associated with Struvite produce Urease, which splits Urea, thus raising Urinary pH and causes formation of Struvite stone,
 - Examples of organisms: Proteus, Pseudomonas and Klebsiella, Staphylococcus;

- Urease inhibitors, such as Acetohydroxamic acid or Hydroxyurea, have been used to prevent Alkalization of urine and precipitation of Struvite;
- To minimized the risk of recurrence, complete removal of the stone should be done and high fluid intake should be encouraged;

What are the characteristics of Cystine stones?

- Cystine stones do not occur regularly, but correct diagnosis is often delayed;
- May be caused by Inherent Error in metabolism, due to increased excretion of:

• Cystine, Ornithine, Arginine and Lysine;

- Family history is important;
- Stones are composed mainly of **Cystine**, which is less soluble in urine than other amino acids;
- Cystine stones should be suspected in patient that presents with family history of stones at an early age, and has not responded to common forms of treatment;

- Diagnosis can be confirmed by either rapid screening using the Nitroprusside test or high 24-hour Cystine excretion or Stone analysis;
- Prevention of stone formation is adequate hydration,
- Patient needs to produce more than 3.0L of urine per 24 hours, which usually means drinking at least two glasses of water at night,
- Alkalization of urine with high Bicarbonate tabs;
- Most patients find it difficult to maintain regimen long-term, thus there is usually high recurrence rate;

What biochemical Investigations are done on Patients with Renal Stones?

- Chemical analysis of urinary stones is important in investigation of their composition and why they formed;
- Stones may have characteristic Colors or Appearance, but Crystallographic Analysis is used to determine the composition of stones;
- Some Biochemical tests helpful in reaching a diagnosis:
 - Plasma Calcium, Phosphate, Total CO₂,
 - Plasma Albumin,
 - Urate concentrations,
 - Alkaline Phosphatase activity in plasma,
 - Full acid-base assessment,

- Complete Urinalysis;
- 24-hour excretion of Calcium, Phosphate and Urate;
- Urinary excretion of Oxalate, Cystine or Xanthine;
- Urinary Acidification Tests,
- Renal Function Tests,
- Plasma Creatinine,
- Plasma Urea,
- Plasma Electrolytes,
- Microbiological examination of Urine;

REFERENCES

- Textbook of Biochemistry, with clinical correlations, Ed. By T. M. Devlin, 4th Ed.
- Harper's Illustrated Biochemistry 26th Edition; 2003; Ed. By R. K. Murray et. al.
- Biochemistry, By V. L. Davidson & D. B. Sittman. 3rd Edition.
- Hames BD, Hooper NM, JD Houghton; Instant Notes in Biochemistry, Bios Scientific Pub, Springer; UK.
- VJ Temple Biochemistry 1001: Review and Viva Voce Questions and Answers Approach; Sterling Publishers Private Limited, 2012, New Delhi-110 – 020.